

Multi-Agent Systems

General point of view from the French MAS College

Emmanuel ADAM

www.afia.asso.fr

Plan

- 2 Agents : some elements
 - VOWELS
 - Agent: Life Cycle
 - Agent: Control architectures
 - MAS: set of agents
 - MAS: Platforms
- MAS: key points
 - MAS: key points
 - MAS: french projects
- 4 Conclusion

College SMAA

French college on MAS

- Part of the AFIA association
- SMAA : \approx 24 teams
- 2 communities: MAS (JFSMA) and AA (ACAI, Artificial Companions, Affects, Interactions)
- collaboration with GDR Robotic, GDR MACS, Simulation (DEVs) group
- > 60 PhD in progress, > 215 PhD completed since 2005
- > 25 HDR completed since 2005
- www.college-smaa.fr

Agents: some definitions

A computer Science Point of View

- An agent is a software system that is capable of autonomous actions on behalf of its perception of its environment in order to satisfy its objectives.
- A multiagent system is a set of agents that interact (coordinate, cooperate, confront, negociate, decide...) to satisfy a global goal. They can follow specific organizations.

VOWELS approach

A.E.I.O.U (Demazeau 1995)

List of elements to describe in a MAS:

- A Agents: kind of agents, their roles
- E Environment: what is perceived by agents; static, dynamic elements
- I Interactions: protocoles (negotiation, cooperation, CFP, ...), trust, ...
- Organizations: hierachical, market, society, flat, ...
- U Users: type of users, their roles

Depending on the objective, priorities of the elements change (Simulation \approx EAIOU, ManufacturingControl \approx AOIEU, Personal assistant \approx UAEIO)

Do not forget the adaptive functions!

Agent: Life Cycle

	Context C ₁	Context C ₂	Context
<u>ء</u> بـ	a ₁ [h(a ₁ , c ₁) = 0.8]	a ₃ [h(a ₃ , c ₂) = 0.9]	a ₄ [h(a ₃ , c ₃)
	a ₂ [h(a ₂ , c ₁) = 0.7]	a _s [h(a _s , c ₂) = 0.8]	a ₁ [h(a ₅ , c ₃)
	a ₃ [h(a ₃ , c ₁) = 0.6]	a ₁ [h(a ₁ , c ₂) = 0.3]	a₂ [h(a ₁ , c ₃)
	a ₄ [h(a ₄ , c ₁) = 0.5]	$a_2 [h(a_2, c_2) = 0.1]$	a₅ [h(a ₂ , c ₃)
	a _s [h(a _s , c ₁) = 0.2]	a ₄ [h(a ₄ , c ₂) = 0.1]	a₃ [h(a₄, c₃)

Control architectures

Two main approaches to define the behaviour

- Subsumption: multiple layers of control, where lower levels represent simple and reactive behaviours, and higher levels represent more complex actions.
 Higher-level behaviours can select or "subsume" the lower ones.
- Sequence of behaviours are predefined (and so, easier to understand)
- Adequate for control of systems (hierarchical, holonic, recursive, multi-level architecture)

Control architectures

Two main approaches to define the behaviour

- BDI: Beliefs, Desires, Intentions.
 Beliefs are representation of their environment, the others,
 Desires are goals to achieve according to a context,
 Intentions are next actions.
- more flexible than predefined plan, more resilient,
 but more complex to foreseen, guarantee the result

Set of agents

Compositions

AGR: Agent, Groups, Roles (behaviour).

CRIO: Capacity, Role, Interaction, Organisation.

RIO: Role, Interaction, Organisation.

FIPA: Services, sub-services

Reactive: breed, species, ...

MAS: Platforms

Some platforms build by French teams:

- Application:
 - JaCaMo (EMSE, Saint Etienne, ...): Jason (Agent, interaction),
 CarTaGo (Environment, artefact), Moïse (Organisation). (BDI / Groups, Roles)
 - SARL: Agent Programming Language (recursion for holonic MAS)
 JANUS: Agent and Holonic Platform. (Subsumption / CRIO)
 - JADE (Java Agent DEvelopment), some local devpt like Jade UPHF (Valenciennes)
- Simulation:
 - MADKIT (LIRMM, Montpellier). (Reactive / Group, Role)
 - GAMA (Toulouse, Paris, ...). (Reactive, BDI / Species)
 - Mecsyco (Loria, Univ. Lorraine). (Reactive / multilevel)
 - ▶ IODA (Univ. Lille). Netlogo extension (Interaction-Oriented Design of Agent simulations)

MAS: key points

- cooperation: framework to detect 7 no-cooperation situations (ncs)[IRIT Toulouse]
- DCOP: limit the information shared (Onera Toulouse (position of satellites), UPHF)
- resources/tasks sharing: negotiation (Univ. Lille), vote, auction, ...
- distributed control
 - consensus, cooperatif, résilient (Centrale Lille Institut)
 - auto-organisation (Lyon)
 - cooperative (Toulouse, Paris Saclay, Bourgogne Franche Comté)
- simulations (Toulouse, La Réunion, Brest, Univ. Gustave Effeil, Univ. Lorraine)
- emotions (Univ. Normandie)
- user interactions (cf. ACAI)
- **.** . .

MAS: key points

Current and future

- MARL (Lyon, Univ Côte d'Azur, Paris Saclay, Montpellier, Toulouse, Renne, Paris Sorbonne) since ≈ 5 years
- Multi-Agent LLM : new !
- IoT, embedded agents (Paris Sorbonne, Univ Grenoble Alpes, Bourgogne Franche Comté) since ≈ 15 years
- Ethics (Univ Caen Normandie) since ≈ 10 years
- Humans in the loop !! since the beginning (personnal agent), more recent for MAS (CoBot, SmartCities, . . .)

www.afia.asso.fr

MAS: french projects

Some recent ANR projects

- Agent conversationnel animé pour favoriser l'interaction sociale dans la schizophrénie. ('Enhancer', 'ANR-22-CE17-0036', 'AAPG2022')
- Processus de décision multi-agent de confiance pour l'Internet des Objets.
 ('MaestrloT', 'ANR-21-CE23-0016', 'AAPG2021')
- Multi-agent Agri-food living labs for new supply chain Mediterranean systems; towards more sustainable and competitive farming addressing consumers' preferences and market changes. ('LAB4SUPPLY', 'ANR-21-PRIM-0007', 'PRIMA 2020')
- Emergence de la communication par apprentissage par renforcement guidé par la curiosité en environnement multi-agent. ('ECOCURL', 'ANR-20-CE23-0006', 'AAPG2020')
- An agent-based spatial temporal stochastic framework for modeling of epidemic spread and interventions. ('ABM-EPISPREAD', 'ANR-20-COVI-0029', 'COVID-19')
- Apprentissage adaptatif multi-agent. ('ALIAS', 'ANR-19-CE48-0018', 'AAPG2019')

MAS: french projects

Other projects

• other regional, national, international projects on the web pages of the teams !

Next rendez-vous

• JFSMA: French days on MAS, 29/07-03/08/26, Arras!!

Thank you! college-smaa.fr